
Journal of Sound and <ibration (2002) 252(5), 883}918
doi:10.1006/jsvi.2001.3833, available online at http://www.idealibrary.com on

0

VORTEX}SURFACE INTERACTION NOISE:
A COMPENDIUM OF WORKED EXAMPLES

H. ABOU-HUSSEIN, A. DEBENEDICTIS, N. HARRISON, M. KIM, M. A. RODRIGUES,
F. ZAGADOU AND M. S. HOWE

College of Engineering, Boston ;niversity, 110 Cummington Street, Boston Massachusetts 02215,
;.S.A. E-mail: mshowe@bu.edu

(Received 1 February 2001, and in ,nal form 16 May 2001)

Students attending a graduate course on the ¹heory of <ortex Sound given recently at
Boston University were required to investigate the lowMach number unsteady #ow and the
accompanying acoustic radiation for a selection of idealized #ow}structure interactions.
These included linear and non-linear parallel blade}vortex interactions for two-dimensional
airfoils, and for "nite span airfoils of variable chord; interactions between line vortices and
surface projections from a plane wall; blu!-body interactions involving line and ring vortices
impinging on circular cylindrical and spherical bodies, and vortex motion in the
neighborhood of a wall aperture. In all cases, the e!ective source region was localized in
either two or three dimensions, and could be regarded as acoustically compact, and the
sound was calculated by routine numerical methods using the theory of compact Green
functions. The results are collected together in this paper as a compendium of canonical
solutions that provide qualitative and quantitative insight into the mechanisms responsible
for sound production, and a database that can be used to validate predictions of more
generally applicable numerical schemes. � 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Lighthill's &&acoustic analogy'' [1] expresses the equivalence of sound production by a #ow
and the generation of sound in an ideal, stationary medium driven predominantly by the
Reynolds stress #uctuations. In a homentropic medium, the theory can be recast into a form
where vorticity alone may be identi"ed as the ultimate &&source'' of sound [2}4]. Lighthill
was a strong advocate of the study of vorticity for analyzing complex #ows (&&the only
quantity whose variations are not propagated at the enormous speed of sound'' [5]), and
pioneered in the late 1950s the &&vortex method'' for the numerical solution of unsteady
#ows. This has since become one of the major tools for investigating complex #ow}structure
interactions at low Mach numbers [6, 7], and also provides the most e$cient means of
calculating the accompanying acoustic noise. Vortex}airfoil interactions constitute
a particularly important subclass of such #ows, and the literature contains many accounts
of their numerical simulation (e.g., references [8}13]) and predictions of the sound they
produce.

Students attending a recent graduate level course on the ¹heory of <ortex Sound at
Boston University were required to investigate the interaction at low Mach number of
idealized vortex structures (rectilinear or circular line vortices) with several simple solid
boundaries, and to calculate the sound generated by the interactions. These included
(1) blade}vortex interactions in two dimensions, (2) parallel blade}vortex interactions in
three dimensions, (3) a vortex interacting with a wall barrier, (4) a vortex interacting with
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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a circular cylinder, (5) line and ring vortices interacting with a sphere, and (6) a vortex pair
incident on a wall aperture.

Some of these are too idealized to be representative of real #ow}structure interactions,
but all of them can be regarded as special limiting cases, and the resulting noise predictions
can assist in the validation of more generally applicable numerical schemes. In addition,
whereas the results of each separate calculation might not be especially signi"cant,
a compilation of predictions for the whole set provides valuable insight into the mechanisms
of sound generation by #ow}structure interactions at low Mach numbers. Therefore, in this
paper the results of the student projects are gathered together into a compendium of
predictions with the dual purpose of providing a reference set of analytical predictions and
a tutorial on mechanisms of sound production by vortex}surface interactions.Most of these
interactions have been considered previously in the literature, in various forms and
approximations, and speci"c references to earlier work are given later in the paper.

The relevant standard formulae and equations of the theory of vortex sound are reviewed
in section 2, in forms suitable for application to both two- and three-dimensional
interactions. The remaining sections of the paper are devoted to discussions of problems
(1)}(6). In all cases, theMach number is assumed to be su$ciently small so that the details of
the vortex}surface interaction can "rst be determined by taking the motion to be
incompressible. The predicted rotational #ow is then used to calculate the radiated sound
using the appropriate compact Green function (also discussed in section 2) tailored to the
surface geometry.A novel alternative to the usual application of the unsteady Kutta
condition is used in problems (1) and (2) to model the in#uence of additional vorticity shed
from an edge [14]. It was desirable that student projects could be successfully completed by
relatively elementary means, without the need to explicitly evaluate the properties of
a vortex wake (in contrast to the classical airfoil}gust interaction problem of Sears [15]).
A formal procedure was adopted that is strictly valid at high reduced frequencies, when the
hydrodynamic wavelength of the #ow is small compared to the airfoil chord. This method
identi"es the principal locations of #ow}structure interaction noise sources with
singularities of the compact Green function, which for an airfoil occur in the vicinities of the
leading and trailing edges. Vortex shedding from an edge induced by an incident &&gust'' is
known to reduce the importance of that edge in generating sound [4]. Because the edges
behave as independent sources at high reduced frequencies, the trailing edge source can be
removed essentially by deleting the corresponding edge singularity from the Green function.
The accuracy of this procedure is discussed in section 3, where a comparison with
predictions based on the full Sears analysis indicates that the approximation is valid for
vortex length scales as large as the airfoil chord.

2. VORTEX}SURFACE INTERACTION NOISE AT LOW MACH NUMBERS

To cast Lighthill's theory of aerodynamic sound into a form in which vorticity is
identi"ed as the ultimate source, it is necessary to adopt the total enthalpy B as the acoustic
variable, as opposed to the pressure p or density �. The source terms in the reformulated
theory are then con"ned to those regions where the vorticity �O0 and where �sO0,
where s is the entropy. In many applications (for example, in the absence of combustion), it
is permissible to regard the source #ow as homentropic. Then Lighthills' equations takes the
form [3, 4]
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Figure 1. Low Mach number vortical #ow in the vicinity of a rigid body S.
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where c is the local speed of sound and v is the velocity. Bernoulli's equation implies that in
the absence of vorticity and moving boundaries the total enthalpy

B"�
dp

�
#

1

2
v� (2)

is a constant that may be assumed to vanish. Outside the source #ow the unsteady
motion is entirely irrotational with velocity potential � (x, t), say, and B"!��/�t, so
that B is easily related to the acoustic pressure in the far "eld. If the #uid is assumed to
be at rest at in"nity the acoustic pressure p"�

�
B, where �

�
is the uniform mean density

in the far "eld.
The left side of the vortex sound equation (1) takes explicit account of non-linear e!ects

on propagation, because the local values of the density �, sound speed c and the
#ow velocity v all occur in the di!erential wave operator. In an extensive region of
turbulence, whose size exceeds many characteristic acoustic wavelengths, or where a mean
shear layer contributes a large linear contribution to � ? v, the scattering and refraction
within the source region can also be important, this e!ect is implicitly included in the source
term.

An important subclass of problems involves unsteady, low Mach number vortical #ow in
the neighborhood of a stationary rigid body S, in the vicinity of which the motion may be
regarded as incompressible (Figure 1). When non-linear e!ects on the propagation of the
aerodynamic sound are also ignored, and the mean #ow is at rest at in"nity (if necessary by
means of a suitable Galilean transformation) equation (1) reduces to the much simpli"ed
form

�
1

c�
�

��

�t�
!��� B"div (� ? v), (3)

where the speed of sound c
�
may now be regarded as constant.

This equation can be solved by introducing a Green function G(x, y, t!�) that
satis"es
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and has vanishing normal derivatives �G/�x
�
, �G/�y

�
, respectively, for x and y on S. The

application of the Green theorem then permits the solution of equation (3) to be cast in the
form [4, 16, 17]

B (x, t)+!�
�

(�?v)
�
(y, �)

�G
�y

�

(x, y, t!�) d� y d�#� �
�

� (y, �)?
�G
�y

(x, y, t!�) ) dS(y) d�,

(5)

where � is the kinematic viscosity, and the momentum equation has been used in Crocco's
form [4],

�v

�t
#�B"!�?v!� curl�

with the neglect of dilatational viscous terms in the source region.
Let us now specialize the discussion to cases where the body S is acoustically compact (or,

for an airfoil-like structure, where the chord is compact). According to Curle's [18]
extension of Lighthill's theory, solution (5) is equivalent to that generated by a dipole
acoustic source whose strength is proportional to the net unsteady force exerted on the #uid
by the body. An explicit representation of this dipole sound is obtained by using the compact
approximation to the Green function [3, 4],

G(x, y, t!�)"
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� . (6)
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(y)) in this formula will be referred to as the Kirchho+

vector of the body; it is de"ned by
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where�*
�
(y) is the velocity potential of ideal incompressible #ow that would be produced by

motion of S at unit speed in the i direction.
The potential functions �*

�
(y) were introduced by Kirchho! (see section 2.9 of reference

[19] for a detailed discussion). They are a geometrical property of S, and satisfy
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where n is the unit normal on S (directed into the #uid). They are usually associated with the
de"nition of the added mass tensor [19],
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The Kirchho! vector Y (y) is therefore determined by the shape of S. >
�
(y) is just the

velocity potential of ideal #ow past S having unit speed in the i direction at large distances
from S; the normal derivative �>

�
/�y

�
"0 on S. The function X(x) in equation (6) is de"ned

similarly in terms of x.
The compact Green function (6) is an approximate solution of equation (4) that agrees

with the exact Green function when the latter is expanded in a multipole series and all terms
of quadrupole order and higher are discarded; representation (6) is valid provided either
x or y lies in the far "eld of the body. When x lies in the acoustic far "eld, and S is
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a three-dimensional compact body, the expansion of G to dipole order in the retarded time
yields

G(x, y, t!�)+
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x
�
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where the prime denotes di!erentiation with respect to t. Only the second term in this
expansion makes a non-zero contribution when substituted into the right-hand side of the
general solution (5). Thus, recalling that B&p/c

�
in the acoustic far "eld, this procedure

supplies the dipole acoustic pressure in the form
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where �"�
�
� is the shear coe$cient of viscosity, and the terms in square braces [ ] are

evaluated at the retarded time t!	x 	/c
�
. The integrals, respectively, represent the dipole

strengths produced by the normal stresses on S generated by the free"eld vorticity and by
the surface frictional forces. The latter is usually discarded at very large Reynolds numbers,
in which case we can write

p (x, t)+
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In this paper, we shall also discuss applications of the simpli"ed vortex sound equation (3)
to vortex}surface interaction problems in two dimensions, involving a cylindrical body
S whose generators are parallel to the x

�
-axis of the co-ordinate system (x

�
, x

�
, x

�
), when

the motion is constant in planes parallel to x
�
"0. The vortex sound source � ? v is then

independent of x
�
, and �

�
is the only non-zero component of the vorticity. The Green

function for cylindrical S of compact cross-section is still given by equation (6) where now,
however, the Kircho! vectors X and Y reduce to

X
���

"x
���

!�*
���

(x), >
���

"y
���

!�*
���

(y), X
�
"x

�
, >

�
"y

�
.

Thus, G(x, y, t!�) is a function of x
�
!y

�
, and this implies that the corresponding

two-dimensional compact Green function, which satis"es equation (4) when the right side is
replaced by

� (x
�
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�
)� (x
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!y

�
)�(t!�),

can be derived by integrating the three-dimensional formula (6) over !R(y
�
(R

(Hadamard's &&method of descent'' [20]). The integration simpli"es when x lies in the far
"eld of the cylinder. The &&monopole'' part of the resulting expression is independent of
y and may be discarded (because it makes no contribution to the radiation generated by the
divergence source div (� ? v)), in which case we "nd
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where x"(x
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, x
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), and H is the Heaviside step function.

The two-dimensional analog of the high Reynolds number approximation (10) is then
found to be
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Solutions (10) and (12) are consistent with the corresponding approximations to Curle's
[18] solution of the aerodynamic sound problem in three and two-dimensions:

p(x, t)+�
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4�c
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, two dimensions,

	x 	PR, (13)

where, respectively, F (t) is the net force exerted on the #uid in three-dimensions, and the
force per unit span in two dimensions These formulae reduce to the corresponding equations
(10) and (12) when the motion in the vicinity of the body can be regarded as incompressible,
because the componentF

�
of the force exerted on the #uid (per unit span in two dimensions)

by a stationary body in high Reynolds number -ow is given in terms of the vorticity by [4, 21]

F
�
"!�

� � (� ? v) (y, t) ) �>
�
(y) d� y, (14)

where n"2 or 3 according to whether the geometry is two or three dimensional.

3. BLADE}VORTEX INTERACTIONS IN TWO DIMENSIONS

We consider both the linear and non-linear theories of the two-dimensional interaction of
a rectilinear vortex with a strip airfoil. The motion is assumed to occur at high Reynolds
number, so that viscosity can be ignored except possibly for its e!ect via the Kutta
condition at the sharp trailing edge [14], and at su$ciently small Mach number that the
motion in the neighborhood of the airfoil may be regarded as incompressible. The general
problem is illustrated in Figure 2, which shows a vortex of circulation � in motion in the
neighborhood of a rigid airfoil of chord 2a occupying !a(x

�
(a, x

�
"0. Conditions are

uniform in the x
�
direction (out of the plane of the paper in the "gure), and there is no mean

circulation about the airfoil. Consideration is given to cases with and without a mean #ow
in the x

�
direction.

3.1. EQUATION OF MOTION OF THE VORTEX

At time t let the vortex be at x,(x
�
, x

�
)"x

�
(t), so that �"�k� (x

�
!x

��
(t)) � (x

�
!

x
��

(t)), and the vortex translational velocity v
�
"dx

�
/dt, where k is a unit vector out of the

plane of the paper in Figure 2.
Figure 2. Interaction of a line vortex � with a two-dimensional airfoil at zero mean angle of attack to a mean
#ow in the x

�
direction.
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De"ne z"x
�
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. The transformation [22]
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z

a
#	

z�

a�
!1, (15)

maps the #uid region in the z-plane of the airfoil into the region 	�	'1 in the �-plane. The
&&upper'' and &&lower'' faces of the airfoil (x

�
"$0), respectively, transform into the upper

and lower halves (Im ��0) of the unit circular cylinder 	� 	"1, and the vortex maps into an
equal vortex at �"�

�
, say.

In the absence of mean #ow (;"0) and when there is no mean circulation about the
cylinder (and therefore about the airfoil), the complex potential w (�) of incompressible,
inviscid motion in the �-plane is obtained by placing an image vortex !� within the
cylinder at the inverse point �"1/�*

�
together with a vortex #� at the center. These

vortices ensure that the total circulation around the cylinder vanishes. Then

w(�)"!

i�
2�

ln(�!�
�
)#
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ln��!

1

�*
�
�!
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ln �.

The corresponding velocity potential in the z-plane is found by setting �"� (z). Because
a mean #ow in the x

�
direction is una!ected by the airfoil, its contribution can be included

by augmenting w(z) by ;z. We then "nd

w (z)"!
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2�
ln (�(z)!� (z

�
))#F(z), (16)

where
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�
.

The velocity potential=(z) determining the motion of the free vortex at z
�
is obtained by

subtracting the &&self-potential''!(i�/2�) ln (z!z
�
) from the right side of equation (16) [19,

22]. The complex velocity of the vortex is then equal to= 
 (z
�
) (where the prime denotes

di!erentiation with respect to z after which the substitution z"z
�
is made), with the explicit

representation
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i.e.,
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"
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Z

�Z�!1
!1#

2

	�
�
	�!1�#;, (17)

where

Z"

z
�
a
, �

�
"Z#�Z�!1.

Equation (17) takes no account of vortex shedding from the trailing edge, i.e., of the
unsteady Kutta condition [14]. In the linearized approximation (where the image vortices
are ignored, and the vortex is assumed to convect passively at the mean stream velocity;),
this can be recti"ed by assuming the shed vorticity to lie within a thin vortex sheet
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downstream of the trailing edge at x
�
"a and to convect downstream at speed; [15]. This

would lead to the Sears representation of the sound produced by the vortex}airfoil
interaction [4]. We shall not pursue this, however, because it limits the discussion to
linearized motions.

3.2. THE ACOUSTIC PRESSURE

The far"eld sound produced by the interaction is calculated using the two-dimensional
formula (12), which has the explicit form

p (x, t)+
!�

�
�x

�
2��2c

�
	x 	���

�
�t �

t!	x 	/c
�
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�
�y

�
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�
(�)
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�t!�!	x 	/c
�

, (18)

where the Kirchho! vector for the strip airfoil has the components [4]

>
�
"y
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�
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�
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�
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Let � denote the angle depicted in Figure 2 in the direction of an observer at x in the far
"eld. Then equation (18) becomes
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The two integrals represent dipole acoustic "elds. According to Curle's theory [18] and
formula (14), the dipole strengths are determined by the unsteady force (F

�
, F

�
) exerted on

the #uid per unit span of the airfoil. The "rst is aligned with the airfoil chord (the mean #ow
direction) and represents the in#uence of suction forces at the leading and trailing edges
[19]; the second component F

�
is equal and opposite to the unsteady lift produced by the

interaction.
In general, the integrals must be evaluated numerically, using the solution of the equation

of motion (17). Introduce the notation
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d
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!iZ
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evaluated at the vortex z"z
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and the acoustic pressure becomes
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d��
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where [t]"t!	x 	/c
�
is the retarded time.

Equations (17) and (21) determining the motion of the vortex motion and the acoustic
pressure will now be applied to several di!erent special cases.
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3.3. LINEAR THEORY

According to linear theory, the vortex � is swept past the airfoil along a trajectory parallel
to the x

�
direction at precisely the uniform mean #ow speed ;. Only the second integral in

equation (21) contributes to the sound (because dZ/d�";/a is real). This is the case
illustrated in the upper part of Figure 3. When the stando! distance h�a, the characteristic
scale of the dominant motions near the airfoil is small compared to the chord 2a, and sound
production occurs principally at the leading and trailing edges. Mathematically, the
importance of the edges as sources of sound occurs because the Green function is singular
at these points (Z"$1) where W(Z) de"ned in equation (20) is unbounded. At high
reduced frequencies, the main contribution to the second integral in equation (21) is then
from the neighborhood of those retarded times where 	Z(�)$1 	 is small.

But, at these high reduced frequencies vortex shedding causes the level of sound
production at the trailing edge to be small [4] without a!ecting sound generation at the
leading edge. We can formally account for this simply by ignoring the contribution to
integral (21) from the neighborhood of the trailing edge. This is equivalent to expanding
W(Z) about the leading edge Z"!1, i.e., to introducing the approximation

W(Z)+
1

�2�Z#1
, (22)

where the branch cut for �Z#1 runs along the real axis from Z"!1 to #R.
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By making this substitution into equation (21), measuring time from the instant that the
vortex crosses the midchord x

�
"0 of the airfoil (so that Z";�/a#ih/a), and making the

change of integration variable �"1/�t!�!	x 	/c
�
, the second integral in equation (21)

can be evaluated explicitly to yield the lift dipole acoustic pressure in the form

p(x, t)

�
�
�;�M cos� (a/	x 	)���/4�a

+

(;[t]/a#1)

(;[t]/a#1)�#(h/a)�
, 	x 	PR, (23)

where M";/c
�
.

The non-dimensional acoustic pressure signature determined by this formula (i.e., the
right of equation (23)) is plotted as the solid curves in Figure 3 for h/a"0)2, 0)5, 1)0.

To assess the utility of approximation (22) in taking proper account of vortex shedding,
a comparison can be made with predictions derived from the Sears, linear theory
calculation of the unsteady life force per unit span !F

�
(�), say, which takes full account of

the Kutta condition [15]. The sound is then found from the second of equations (13) (where
j"2) in the present linear theory) in the form

p(x, t)

�
�
�;�M cos� (a/	x 	)���/4�a

+�2�Re �
�

�

(i�)��� S (�)e!��h/a#i;[t]/a� d�, 	x 	PR

(24)

where

S(x)"
2

�x [H���
�

(x)#iH���
�

(x)]

is the Sears function [4, 15] (H���
���

(x) being Hankel functions). The corresponding acoustic
pressure signatures are plotted as the dotted curves in Figure 3. The agreement with the
approximate theory is remarkably good even when h/a is as large as unity, when the
characteristic frequency of the unsteady motion is small, and might be expected to lie
outside the range where the &&high-frequency'' approximation (22) is applicable. Note that
the predicted pressure pro"les are consistent with expectations: before the vortex reaches
the leading edge it induces an upwash creating a positive lift on the airfoil; the lift becomes
negative when the vortex is downstream of the edge. The dipole source strength is equal and
opposite to this force, so that the pressure radiated directly above the airfoil is initially
negative and then becomes positive, in qualitative agreement with equation (13).

3.4. NON-LINEAR THEORY

When account is taken of &&image vortices'' in the airfoil, the trajectory of the vortex in the
neighborhood of the airfoil is no longer parallel to the mean #ow direction, and must be
determined by numerical integration of equation (17). To do this introduce a dimensionless
velocity ratio � and time ¹ de"ned by

�"
�

4�a;
, ¹"

;t

a
,

in terms of which equation (17) becomes

dZ*

d¹

"

i�

�Z�!1 �
Z

�Z�!1
!1#

2

	�
�
	�!1�#1, (25)

which is suitable for numerical integration.



Figure 4. Non-linear interaction of a line vortex with a two-dimensional airfoil for h/a"0)2, �"�/4�a;"0)2.
The small trailing edge generated acoustic &&blips'' (� ��) are removed by interpolating between the predicted
acoustic pressures (27) on either side of the blips.
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If the initial stando! distance at x
�
"!R is h, the integration is started at a large

distance ¸ upstream of the airfoil midchord, at say ¸"20a, by prescribing the initial
position of the vortex to be Z"!¸/a#ih/a. The upper part of Figure 4 shows
the trajectory calculated in this way for �"0)2, h/a"0)2, where the time is measured from
the instant that the vortex passes the midchord of the airfoil. The non-linear in#uence of the
image vorticity is to shift the initially rectilinear trajectory of the vortex away from
the airfoil in the direction of the &&vortex force''�?U (U";i). The vortex is closest to the
airfoil at ;t/a"0, where x

��
&0)28a, and where convection by the images increases

the translation speed of the vortex from ; to approximately 1)71;.
The sound generated as the vortex passes the airfoil is given by equation (21). Vortex

shedding from the trailing edge is modelled by using approximation (22) for W(Z).
The integrals are evaluated numerically in terms of a dimensionless vortex convection
velocity.

dZ

d¹K
"u(¹K )#iv (¹K ), where ¹K "

;�
a

.

Then, setting M";/c
�
,

p (x, t)

�
�
�;�M (a/ 	x 	)���/4�a

+2���
d

d¹�sin��
	�


��

v (¹K ) d¹K
�[¹]!¹K

#cos� �
	�


��

Im(W(Z)(u#iv))(¹K ) d¹K
�[¹]!¹K �
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"2��� sin �
d

d¹ �
�

�

v ([¹]!��) d�#2��� cos�
d

d¹ �
�

�

Im(W(Z) (u#iv)) ([¹]!��)) d�

+

p
�
(x, t)

�
�
�;�M (a/ 	x 	)���/4�a

#

p
�
(x, t)

�
�
�; �M (a/ 	x 	)���/4�a

, (26)

where ¹";t/a, [¹]";[t]/a, and the integration variable ¹K has been replaced by

�"�[¹]!¹K . The "nal integrals are easily evaluated numerically when the path of
the vortex has been determined. The upper limit of integration is actually "nite, because the
source terms vanish as soon as [¹]!�� reduces to the non-dimensional time at which the
computation of the vortex path begins (where the vortex is su$ciently far upstream such
that it e!ectively produces no sound by interaction with the airfoil).

The components p
�
(x, t), p

�
(x, t) de"ned by equation (26) correspond, respectively, to

the dipole sound produced by the unsteady suction and lift forces; their non-dimensional
forms

p
�
(x, t)

�
�
�;�M sin�(a/ 	x 	)���/4�a

and
p
�
(x, t)

�
�
�;�M cos�(a/ 	x 	)���/4�a

(27)

are plotted in Figure 4. Vortex shedding must smooth out the pro"les of the pressure
signatures at the retarded times when the vortex is close to the trailing edge.But the
calculated pressures exhibit &&blips'' shown dotted in the "gure. These arise because,
although the numerical calculation has accounted for vortex shedding in evaluating the
dipole source strengths, the e!ect of shedding was not included in the calculation of the
vortex trajectory. However, the smoothing in#uence of shedding at a sharp edge acts to
remove the blips, and the pressure signatures actually have pro"les similar to those depicted
by the solid curves in the "gure, obtained by interpolating between the calculated pressures
on either side of the blips (by joining smoothly the monotonically decreasing sections of the
pro"les on either side of the blips). The overall lift dipole radiation is then very similar to the
linear theory prediction of Figure 3 for h/a"0)2 (and agrees well with a recent numerical
modelling of this problem by Wood [23]), but there is no linear theory counterpart of the
suction dipole sound.

An interesting special case occurs when the initial stando! distance of the vortex h"0
(Figure 5). In the linearized approximation, the vortex would strike the leading edge of the
airfoil at ;[t]/a"!1, at which time the linear theory acoustic pressure (23) becomes
in"nite. This singular events does not occur because the vortex trajectory is de#ected by the
image vorticity (in the direction of �?U) to pass around the airfoil. The upper part of
Figure 5 illustrates this for the same value of the velocity ratio �"�/4�a;"0)2 considered
above. The maximum convection velocity of the vortex (at ;t/a"0) is now &2)3;, over
twice the mean stream velocity, and the e!ective frequency of the sound is greatly increased.
The corresponding suction- and lift-dipole acoustic pressures p

�
and p

�
shown in the "gure

are also much larger.

3.5. PERIODIC VORTEX MOTION

When there is no mean #ow past the airfoil (;"0), the characteristic velocity and
dimensionless time are

V"

�

4�a
, ¹"

Vt

a



Figure 5. Non-linear interaction of a line vortex with a two-dimensional airfoil for h/a"0, �"�/4�a;"0)2.
Small trailing edge generated acoustic &&blips'' have been removed by interpolating between the predicted acoustic
pressures (27) on either side of the blips.
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and the equation of motion (17) of the vortex reduces to

dZ*

d¹

"

i

�Z�!1 �
Z

�Z�!1
!1#

2

	�
�
	�!1� .

The solutions are periodic orbits around the airfoil. That shown in the upper-half of
Figure 6 is for a vortex with �'0 released at 0 where x

��
"!2a, x

��
"0. The calculated

period is ¹
�
"Vt

�
/a+35)84.

Although an orbiting vortex motion of this kind cannot be realized in practice (because of
both di!usion of the concentrated vortex core and the continual shedding of additional
vorticity from the edges of the airfoil), it is nonetheless instructive to calculate the
accompanying radiation. By writing

¹K "
V�
a

and
dZ

d¹K
"u (¹K )#iv (¹K )

in the general formula (21) for the acoustic pressure, the non-dimensional suction and lift
acoustic pressures are found to be given by the following modi"ed form of equation (26):

p
�
(x, t)

�
�
V� �M (a/ 	x 	)���

#

p
�
(x, t)

�
�
V��M (a/ 	x 	)���

+2���
d

d¹ �sin��
	�


��

v(¹K ) d¹K
�[¹]!¹K

#cos� �
	�


��

Im (W(Z)(u#iv)) (¹K ) d¹K
�[¹]!¹K �, (28)

where M"V/c
�
, and W (Z) is given by equation (20) in the absence of vortex shedding.



Figure 6. Sound produced by two-dimensional periodic motion of a vortex around the airfoil in the absence of
mean #ow. The vortex was initially released at the point 0 where x

�
"!2a, x

�
"0, and circumnavigates the

airfoil in time <t
�
/a+35)84.
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It follows by inspection and from the numerical solution, that when ¹ is measured as
indicated in Figure 6, from the point of release at Z"!2, the suction and dipole source
strengths have period ¹

�
, and possess Fourier expansions of the form

v(¹)"
�
�
��

a
�
cos�

2�n¹

¹
�
�, Im (W (Z) (u#iv)) (¹)"

�
�
��

b
�
sin�

2�n¹

¹
�
� ,

where the coe$cients a
�
, b

�
can be calculated by using the numerical solution for the orbit to

evaluate

a
�
"

2

¹
�
�
��

�

v (¹) cos�
2�n¹

¹
�
�d¹, b

�
"

2

¹
�
�
��

�

Im (W(Z)(u#iv)) (¹) sin�
2�n¹

¹
�
�d¹.

By making the change of integration variable �"�[¹]!¹K /�¹
�
, the right side of

equation (28) now becomes

4�2�

�¹
�

�
�
��
�!a

�
n sin��

�

�

sin�2�n �
[¹]

¹
�

!���� d�

#b
�
n cos��

�

�

cos�2�n�
[¹]

¹
�

!���� d�� .
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Hence, the suction and lift force dipole "elds are given, respectively, by

p
�
(x, t)

�
�
V��M sin� (a/ 	x 	)���

+!

2�

�¹
�

�
�
��

a
�
�n sin �

2n�t
t
�

!

�
4� ,

p
�
(x, t)

�
�
V��M cos� (a/ 	x 	)���

+

2�

�¹
�

�
�
��

b
�
�n cos �

2n�t
t
�

!

�
4� , 	x 	PR,

where [ ] denotes evaluation at the retarded time t!	x 	/c
�
. The corresponding non-

dimensional pressures are plotted in Figure 6 (taking 26 terms in each series); both have
similar orders of magnitude, and exhibit rapid variations when the vortex is above and
below the airfoil (because of the phase lag �/4 associated with two-dimensional
propagation).

4. PARALLEL BLADE}VORTEX INTERACTIONS IN THREE DIMENSIONS

We now examine to what extent the simple two-dimensional methods of the previous
section can be adapted to wings of "nite span and variable, but acoustically compact chord
for problems of the kind shown in Figure 7. The general representation of the sound for an
airfoil of arbitrary span can be found using the compact Green function (6) [4], but we shall
consider only the case where the span is also compact; predictions for non-compact span
will be intermediate between those for the compact-span case and the results of section 3.
Figure 7. (a) Parallel blade}vortex interaction for an airfoil of "nite span. (b) Side view in the linearized
approximation, when the convection velocity equals the mean stream velocity ;.
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Consider a planar airfoil of either rectangular or elliptic planform, orientated as
illustrated in Figure 7(a) at zero angle of attack to a mean #ow at speed ; in the x

�
direction. A spanwise line vortex of strength � is swept past the airfoil at an initial stando!
distance h above the airfoil, as indicated in the side view of Figure 7(b). The section of the
line vortex that interacts with the airfoil is assumed to remain rectilinear during the
interaction, with representation

�"�k�(x
�
!x

��
(t)) � (x

�
!x

��
(t)),

where x
�
"(x

��
, x

��
, 0) is the vortex position at time t and k is a unit vector in the x

�
direction.

When the airfoil is compact the acoustic pressure is given by equation (10). For an
airfoil of span ¸ (between !�

�
¸(x

�
(�

�
¸), the Kirchho! vector can be approximated

by [4]

>
�
"y

�
, >

�
"�

Re(!i�z�!aL (y
�
)�),

y
�
,

	y
�
	(�

�
¸,

	y
�
	'�

�
¸ ,

>
�
"y

�
, z"y

�
#iy

�
,

where 2aL (y
�
) is the airfoil chord at the spanwise location y

�
. For a rectangular planform

aL (y
�
),a"constant; for an elliptic planform aL (y

�
) takes a maximum value of a at y

�
"0,

and we shall write

aL (y
�
)

a
"	1!

4y�
�

¸�
, 	y

�
	(�

�
¸. (29)

Vorticity is shed into the wake of the airfoil in accordance with the Kutta condition. This
smoothes out conditions at the trailing edge, so that sound is generated primarily by
interaction of the vortex with the leading edge. The Kutta condition will be applied (as in
section 3) by formally removing the trailing edge singularity of the Green function, i.e., by
modifying the x

�
-component of Y as follows:

>
�
"Re (�2aL (y

�
) �z#aL (y

�
)) , 	y

�
	(�

�
¸.

Then, neglecting relatively small end-e!ects, at the airfoil tips, equation (10) supplies

p(x, t),p
�
(x, t)#p

�
(x, t)

+

�
�
� cos�

4�c
�
	x 	

�
�t �

	��

�	��
�
dx

��
dt � dy

�

#

�
�
� cos�

4�2�c
�
	x 	

�
�t �

	��

�	��
�Im �

dz
�

dt

�aL (y
�
)

�z
�
(t)#aL (y

�
)��dy�, 	x 	PR, (30)

where �, � are, respectively, the angles shown in Figure 7(a) between the x
�
- and x

�
-axis

and the radiation direction to the observer at x, z
�
(t)"x

��
(t)#ix

��
(t), and quantities in

square braces are evaluated at the retarded time [t]"t!	x 	/c
�
.

The "rst term on the right is the suction force dipole, aligned with the airfoil chord.
The dipole strength depends on the x

�
-component of the vortex convection velocity,

and is non-zero only when account is taken of non-linear interactions between the
airfoil and vortex. The second term in equation (30) is the conventional lift dipole
radiation.



Figure 8. Linear theory prediction (31) of sound produced by parallel blade}vortex interactions for rectangular
(**) and elliptic (- - - ) airfoils for h/a"0)2.
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4.1. LINEAR THEORY

When the back-reaction of the airfoil on the vortex is ignored, the convection velocity of
the vortex is equal to the mean stream velocity, so that

dx
��

dt
";,

dx
��

dt
"0.

The radiation is produced entirely by the lift dipole, and if the vortex is assumed to cross the
midchord of the airfoil at time t"0, equation (30) reduces to

p
�
(x, t)

�
�
�;M cos� (¸/ 	x 	)/4�a

+!

1

2����
���

����

Im�
�a( /a

(;[t]/a#aL /a#i h/a)����dyL � , (31)

whereM";/c
�
, yL

�
"y

�
/¸ and aL /a is given by equation (29). For the rectangular planform

(aL ,a) the right side of this formula evaluates to

!

1

2���
Im�

1

(;[t]/a#1#i h/a)���� ,
which does not depend on the span ¸. The integral in equation (31) must be evaluated
numerically for the elliptic planform.

The acoustic pressure signatures (left side of equation (31)) for rectangular and elliptic
airfoils are plotted in Figure 8 for a vortex stando! distance h/a"0)2. The pro"les are
qualitatively similar to corresponding plot in Figure 3 for the two-dimensional interaction,
except that in three dimensions the amplitude decreases much more rapidly with increasing
retarded distance of the vortex from the leading edge. For the rectangular planform, the
maximum amplitude is larger and the width of the acoustic pulse is narrower than for the
elliptic planform; in the latter case, the peak interaction of the leading edge singularity (of
the Green function) with the vortex occurs at di!erent retarded times for di!erent parts of
the vortex, reducing the overall magnitude of the pressure and extending the interaction
over a longer time period.



Figure 9. Non-linear interaction of a line vortex with a rectangular airfoil for h/a"0, �" �/4�a;"0)2. Small
trailing edge generated acoustic &&blips'' have been removed by interpolating between the predicted acoustic
pressures (32) on either side of the blips.
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4.2. NON-LINEAR THEORY

When h"0, the induced velocity "eld of image vorticity in the airfoil prevents a direct
collision between the vortex and the airfoil by de#ecting the trajectory to pass above the
airfoil (for �'0). This can be modelled in the case of the rectangular airfoil by assuming
that the section of the vortex within the span !�

�
¸(x

�
(�

�
¸ follows a de#ected path that

is locally identical with that considered in section 3.4 for the two-dimensional problem, and
by neglecting small contributions from the ends of the airfoil.

Introduce the notation

�"
�

4�a;
, ¹"

;t

a
, Z"

z
�
a
,

dZ

d¹

"u(¹)#iv (¹), W(Z)"
1

�2�Z#1
.

Then equation (25) determines the motion of the vortex section within the span of the airfoil
(!�

�
¸(x

�
(�

�
¸, where �

�
is de"ned in terms of z

�
as in equation (15)), and the suction

and lift dipole pressures are given by

p
�
(x, t)

�
�
�;M cos�(¸/ 	x 	)/4�a

+�
dv

d¹�,
p
�
(x, t)

�
�
�;M cos�(¸/ 	x 	)/4�a

+

�
d¹

[Im (W(Z) (u#iv))], 	x 	PR, (32)

where [ ] denotes evaluation at the retarded time t!	x 	/c
�
.

These non-dimensional pressures are plotted in Figure 9 for a velocity ratio �"0)2 when
the vortex is released upstream with a stando! distance h"0. The upper part of the "gure



Figure 10. Sound production during the passage of a line vortex over a thin-wall barrier.
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shows the path followed by those sections of the vortex inboard of the airfoil tips; it is the
same as that in Figure 5 for the two-dimensional problem. Small and spurious acoustic
pulses generated as the vortex passes the trailing edge (because its path is not predicted
correctly there) have been removed from the pressure signatures (as in Figures 4 and 5).
Three dimensionality is seen to produce leading edge generated acoustic pulses that are
considerably narrower than those predicted in two dimensions.

5. VORTEX INTERACTING WITH A WALL BARRIER

The sound produced when vorticity interacts at low Mach number with surface
irregularities on a nominally plane, rigid wall is attributable to dipole sources orientated
parallel to the wall, i.e., to the unsteady wall drag. Kasoev [24] has given a very
approximate analysis of a canonical problem of this type, in which a line vortex translates
by self-induction over the vertical, thin projecting barrier illustrated in Figure 10. Let the
wall coincide with the plane x

�
"0 and the barrier extend along the x

�
-axis from x

�
"0 to

a'0. The vortex

�"�k�(x
�
!x

��
(t))� (x

�
!x

��
(t))

is parallel to the barrier, and convects over the barrier in an irrotational mean stream that
has uniform speed ; in the x

�
direction far from the barrier.

De"ne z"x
�
#ix

�
, z

�
"x

��
#ix

��
. The transformation [22]

�"	
z�

a�
#1 (33)

maps the #uid region above the wall onto the upper-half Im�'0 of the �-plane. The &&left''
and &&right'' faces of the barrier (x

�
"G0), respectively, transform into the intervals

!1(�(0 and 0(�(1 of the real �-axis, and the vortex maps into an equal vortex at
�"�

�
. The method described in section 3.1 accordingly leads to the following equation of

motion of the vortex:

dZ*

d¹

"!i�
1

Z(Z�#1)
!

2Z

Z�#1!	Z�#1 	�#
�Z

�Z�#1
, (34)

where

Z"z
�
/a, ¹"<t/a, <"�/(4�a), �";/<.
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The last term on the right side of equation (34) represents the convection by the mean
#ow.

The two-dimensional compact Green function for this problem (applicable when the
sound produced by the interaction has wavelength �a) must take account of the presence
of the rigid wall at x

�
"0, and is given by the following modi"cation of equation (1) (see

reference [4]):

G(x, y, t!�)+
x
�
>

�
��2c

�
	x 	���

�
�t �

H(t!�!	x 	/c
�

�t!�!	x 	/c
�
�, 	x 	PR, (35)

where the Kirchho! vector

>
�
"Re (�z�#a�), z"y

�
#iy

�
, (36)

which is the velocity potential of incompressible #ow at right angles to the barrier in
a direction parallel to the wall. G represents the "eld of a dipole orientated parallel to the
wall and perpendicular to the barrier, and the e!ect of the wall is to generate an equal
&image' dipole that just doubles the magnitude of the sound relative to the corresponding
dipole in equation (11) in the absence of the wall.

The analog of equation (18) for the far"eld acoustic pressure is therefore

p (x, t)+
!�

�
�x

�
� �2c

�
	x 	���

�
�t �

t!	x 	/c
�

��
�
dx

��
d�

�>
�

�y
�

!

dx
��

d�
�>

�
�y

�
�x

�
(�)

d�

�t!�!	x 	/c
�

. (37)

According to equations (13) and (14), this is just the dipole sound generated by the unsteady
drag force F

�
exerted on the #uid by the barrier, where (per unit span of the barrier)

F
�
"!�

� � �?v ) �>
�
dy

�
dy

�
"!�

�
�k?

dx
�

dt
) �>

�
(x

�
).

This implies that a linear theory of the vortex}barrier interaction (in which the vortex is
convected at undisturbed, irrotational velocity of the mean stream) would predict that no
dipole sound is generated as the vortex passes around the barrier, because in that case

dx
�

dt
";�>

�
(x

�
) and k?�>

�
) �>

�
,0.

Following the procedure described in section 3, introduce the notations

dZ

d¹

"u(¹)#iv (¹), W"

d

dz
(�z�#a�)"

Z

�Z�#1
(38)

evaluated at the vortex. Then equation (37) for the acoustic pressure can be cast in the form

p (x, t)

�
�
<��M sin�(a/ 	x 	)���

+2���
�

�¹ �
�

�

Im(W(Z)(u#iv))([¹]!��) d�, (39)

where [¹]"<[t]/a is the non-dimensional retarded time, and M"</c
�
.

The vortex path equation (34) and the acoustic pressure integral (39) must be evaluated
numerically, taking the initial position of the vortex several barrier heights a upstream
where its motion is una!ected by the presence of the barrier. The upper part of Figure 11
shows the vortex trajectories when the initial stando! distance of the vortex from the wall
h"0)75a for the two cases (1) of no mean #ow, ;"0, and (2) ;"<; the corresponding
non-dimensional acoustic pressures (39) are plotted in the lower part of the "gure. The e!ect
of mean #ow is to draw the trajectory marginally closer to the barrier as it passes the tip of



Figure 11. Vortex trajectories and non-dimensional far"eld acoustic pressures (39) when h/a"0)75 for ;"0
(**) and ;"<,�/4�a (- - - - ).
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the barrier where the interaction is strongest. The convection velocity at this point is also
increased from about 1)98< and ;"0 to 3)95< when ;"<, and this is responsible for
more than doubling the amplitude of the sound and its e!ective frequency.

The inviscid wall barrier problem is dynamically equivalent to that in which a vortex pair,
consisting of a vortex � at z

�
accompanied by an &&image'' of strength !� at z*

�
, is incident

symmetrically and normally on a &&vertical'' rigid strip of width 2a. It is now obvious that the
net dipole strength in the vertical (i.e., x

�
) direction (that we have previously attributed to

suction forces at the edges) must vanish identically. The &&doubling'' of the drag dipole sound
is then seen to be a consequence of the separate contributions to the overall sound from the
vortex � and its image.

6. VORTEX INTERACTING WITH A CIRCULAR CYLINDER

6.1. ISOLATED CYLINDER

The two-dimensional problem of a line vortex in motion near a parallel circular cylinder
is one of the simplest examples of a blu!-body interaction. Let the cylinder have radius
a and be coaxial with the x

�
-axis, and let there be an irrotational mean #ow at speed; past

the cylinder in the x
�
direction, with no mean circulation about the cylinder.

Set z"x
�
#ix

�
and let the vortex have the complex position z

�
"x

��
#ix

��
at time t.

The complex potential w(z) of the motion is found by placing an image vortex !� at the
inverse point z"a/z*

�
and a vortex #� at the center (as in the transformed plane of

section 3). Taking account also of the potential for the uniformmean #ow past the cylinder,
we "nd [22]

w (z)"!

i�

2�
ln(z!z

�
)#

i�

2�
ln�z!

a�

z*
�
�!

i�

2�
ln z#; �z#

a�

z � . (40)
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The complex potential governing the motion of � is now obtained by subtracting the
self-potential (!i�/2�) ln(z!z

�
), following which we derive the vortex equation of motion

dZ*

d¹

"

i

Z (	Z 	�!1)
#� �1!

1

Z��, (41)

where

Z"z
�
/a, <"�/(2�a), ¹"<t/a, �";/<, and dz

�
/dt"< (dZ/d¹),<(u#iv).

The acoustic pressure is determined by equation (18), wherein the Kirchho! vector for the
cylinder has the components

>
�
"Re�z#

a�

z �, >
�
"Re�!i�z!

a�

z ��, z"y
�
#iy

�
. (42)

Set

W
�
"

d

dz �z#
a�

z �,1!

1

Z�
, W

�
"

d

dz�!i�z!
a�

z ��,!i�1#

1

Z��.
and make the change of integration variable ¹K "<�/a in equation (18) to obtain the
acoustic pressure in the form

p (x, t)+
�
�
�<�Ma���x

�
2��2c

�
	x 	���

�
�¹ �

	�


��

Im(W
�
(u#iv)) (¹K )

d¹K
�[¹]!¹K

,

where

M"</c
�
, [¹]"(</a) (t!	x 	/c

�
).

The subscripts j"1, 2, respectively, correspond to the acoustic pressures p
�
(x, t), p

�
(x, t)

generated by the drag and lift dipoles, i.e., by the components of the unsteady force (F
�
, F

�
)

exerted on the #uid (per unit span) by the cylinder. The integrals must be evaluated
numerically using the numerical solution of equation (41) for the path of the vortex. This is

done by making the further change of integration variable �"�[¹]!¹K , leading to

p
�
(x, t)

�
�
<��M sin� (a/	x 	)���

+2���
�

�¹ �
�

�

Im (W
�
(u#iv)) ([¹]!��) d�,

p
�
(x, t)

�
�
<��M cos�(a/	x 	)���

+2���
�

�¹ �
�

�

Im (W
�
(u#iv)) ([¹]!��) d�. (43)

The calculation of the vortex trajectory begins at time ¹
, say, by taking the initial position
of the vortex to be far upstream of the cylinder at z

�
"!¸#ih, where ¸�a is su$ciently

large so that the acoustic source strengths are negligible for ¹(¹
 (Figure 12). The upper
limits of integration in equation (43) are then "nite, because the source terms vanish as soon
as [¹]!��(¹
.

Figure 12 illustrates the typical non-dimensional waveforms (43) produced when
<,�/2�a"2; and for h/a"$0)7. The lift and drag dipole radiations are typically of
the same order of magnitude. When;�<, the lift dipole will tend to predominate, because
in this case convection by the image vortices can be neglected in a "rst approximation, and
then the drag dipole source strength becomes (�?;�>

�
) ) �>

�
,0. The "gure shows how

the amplitude of the sound decreases rapidly with increasing distance of closet approach of



Figure 12. Vortex trajectories and non-dimensional acoustic pressures (43) when h/a"$0)7 for
<,�/2�a"2;: 00 lift dipole, p

�
; - - - -, drag dipole, p

�
.
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the vortex to the cylinder; near the cylinder the translational velocity of the vortex is
increased because the mean #ow velocity is larger, and also because of the increased
in#uence of the image vorticity.

When ;�<, a vortex initially released far upstream with h(0 will pass below the
cylinder (as opposed to the case shown in the "gure, where the induced velocity produced by
image vorticity de#ects the path to pass over the cylinder). In that case, however, the
qualitative shapes of the pressure signatures are unchanged (provided � remains positive).
This can be understood by using de"nitions (42) to introduce &&stream functions'' �

�
, �

�
that are, respectively, constant on the streamlines of the uniform #ows past the cylinder
determined by the velocity potentials >

�
, >

�
, i.e., where

>
�
#i�

�
"z#

a�

z
, >

�
#i�

�
"!i�z!

a�

z �, z"y
�
#iy

�
.

Then the drag and lift source strengths are, respectively, proportional to the retarded
values of

D�
�

Dt
and

D�
�

Dt
.

�
�
always increases in the direction of motion of the vortex, independent of whether the

vortex passes above or below the cylinder, so the lift source always has the same character.
�

�
is an odd function of y

�
, and locally increases with increasing values of y

�
; however, this

source is not a!ected by the mean #ow component of the convection velocity of the vortex,



Figure 13. Vortex trajectories and non-dimensional far"eld acoustic pressures (46) when h/a"0)5 for ;"0
(**) and ;"<,�/2�a (- - - -).
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only by the induced velocity of the image whose direction is such as to make D�
�
/Dt an

even function of y
�
.

6.2. WALL MOUNTED CYLINDER

The production of sound by a vortex translating past a cylindrical, semi-circular
projection on a rigid wall (Figure 13) is analogous to the wall barrier of the problem of
section 5. In inviscid #ow, it is equivalent to the interaction of a vortex pair, the vortex of
strength � at z

�
plus its &&image'' of strength !� at z*

�
, incident symmetrically on an

isolated circular cylinder. Evidently, the symmetry implies that the lift dipole is null.
The velocity potential of the unsteady motion is obtained by augmenting the complex

potential (40) by

i�

2�
ln (z!z*

�
)!

i�

2�
ln�z!

a�

z
�
�#

i�

2�
ln z.

Then

dZ*

d¹

"i�
1

Z!Z*
#

Z!Z*

(	Z 	�!1) (Z�!1)�#� �1!

1

Z�� , (44)

where

Z"z
�
/a, <"�/(2�a), ¹"<t/a, �";/<.
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The far"eld acoustic pressure is given by equation (37), where

>
�
"Re �z#

a�

z �. (45)

The radiation is produced by the unsteady drag force exerted on the #uid by the cylinder,
which vanishes in the linearized approximation, when the vortex is assumed to convect
passively at the local velocity of the undisturbed mean stream. As before, set

dZ

d¹

"u(¹)#iv(¹), W
�
"

d

dz �z#
a�

z �"1!

1

Z�

evaluated at the vortex. Then equations (37) and (45) yield

p
�
(x, t)

�
�
<��M sin� (a/	x 	)���

+2���
�

�¹ �
�

�

Im (W
�
(u#iv)) ([¹]!��) d�, (46)

where the angle � is de"ned as in Figure 12, [¹]"<[t]/a is the non-dimensional retarded
time, and M"</c

�
.

The vortex path equation (44) and the acoustic pressure integral (46) must be evaluated
numerically, taking the initial position of the vortex to be several cylinder radii a upstream
where its motion is una!ected by the presence of the cylinder. The upper part of Figure 13
shows the vortex trajectories when the initial stand-o! distance of the vortex from the wall
h"0)5a for the two cases (1) of no mean #ow,;"0, and (2);"<. The e!ect of mean #ow
is to draw the trajectory marginally closer to the cylinder as it passes over the top of the
cylinder, where the vortex}surface interaction is strong. The convection velocity at this
point is also increased from about 1)23< when ;"0 to 3)07< when ;"<, and this is
responsible for the increased acoustic amplitude and for more than doubling the e!ective
frequency of the sound.The waveforms and these general conclusions are qualitatively the
same as in the corresponding problem in Figure 11 for a vortex interacting with a thin wall
barrier.

7. VORTEX INTERACTIONS WITH A RIGID SPHERE

A sphere represents the simplest three-dimensional blu! body whose inviscid interactions
with simple vortex distributions are amenable to elementary analysis [25}32]. Knio et al.
[32] have applied the method of matched asymptotic expansions to the problem of sound
generation by a vortex ring interacting with a sphere at low Mach number. In this section,
we shall investigate a simple version of their problem by direct application of the theory of
vortex sound; we also discuss the case of a sphere interacting with a nominally rectilinear
vortex.

7.1. SPHERE INTERACTING WITH A LINE VORTEX

The sound generated when a nominally rectilinear vortex is swept past a sphere can be
treated in a linearized fashion, by assuming that each element of the vortex core is convected
along a streamline of the undisturbed, steadymean #ow at the local mean velocity. Consider
a rigid sphere of radius a with center at the co-ordinate origin in the presence of a steady
irrotational -ow which has speed ; in the x

�
direction when 	x 	�a. The mean velocity at

x is therefore

U";�X
�
(x), (47)



Figure 14. Illustration of the de"nition of the stando! distance h and the path of the vortex element in the plane
of symmetry (x

�
"0) for a rectilinear vortex convected in a mean irrotational #ow past the sphere.
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where X
�
(x) is the x

�
-component of the Kirchho! vector for the sphere, which has the

general representation

X
�
"x

� �1#

a�

2 	x 	��. (48)

Consider a line vortex of strength � that is initially far upstream of the sphere and parallel
to the x

�
-axis at a distance h above the plane x

�
"0. The vortex is convected towards the

sphere by the mean #ow. That part of the vortex that passes close to the sphere must
evidently be deformed as it negotiates a passage around the sphere; more distant parts of the
vortex that satisfy 	x

�
	�a are largely una!ected by the sphere, and remain parallel to the x

�
direction during and after the interaction. The shape of the distorted vortex is symmetric
with respect to the mid-plane x

�
"0; the vortex element initially on x

�
"0 remains on this

plane of symmetry as it convects past the sphere along a mean streamline, as illustrated in
Figure 14.

The shape of the vortex at time t is determined by the solution of the equations

dx
�

dt
";

�X
�

�x
�

(x),
dx

�
dt

";
�X

�
�x

�

(x),
dx

�
dt

";
�X

�
�x

�

(x)

for each element of the vortex. If the undistorted sections of the vortex (at 	x
�
	�a) are taken

to convect across the plane x
�
"0 at time t"0, these equations are to be integrated for

each vortex element subject to the initial conditions

x
�
"!;t, x

�
"h, x

�
"x�

�
tP!R,

where x�
�
is the initial &&spanwise'' location of the element.

By setting

¹"

;t

a
, x� "

x

a
,

the equations of motion of a point on the vortex can be cast in the non-dimensional form

dxN
�

d¹

"1#

xN �
�
#xN �

�
!2xN �

�
2(xN �

�
#xN �

�
#xN �

�
)���

,
dxN

�
d¹

"

!3xN
�
xN
�

2(xN �
�
#xN �

�
#xN �

�
)���

,
dxN

�
d¹

"

!3xN
�
xN
�

2(xN �
�
#xN �

�
#xN �

�
)���

.



Figure 15. Stages in the linear theory distortion of a line vortex convected irrotationally in a mean #ow past the
sphere in the x

�
direction when h/a"0)2.
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The integration can in practice start at time ¹"!10, say, with the vortex initially "ve
diameters upstream of the sphere. It may safely by assumed that the sphere has no
perceptible in#uence on vortex elements that initially satisfy 	xN �

�
	'10.

Figure 15 illustrates the calculated shape of the vortex line at di!erent times ¹";t/a
when h/a"0)2, the vortex being convected over the upper surface of the sphere.
The distortion of the vortex "rst becomes evident at about ¹"!2, and the "gure depicts
the progressively distorted forms at later times. The &&hairpin'' loop is produced because the
translation velocities of vortex elements close to the sphere are small in the neighborhood of
the &&stagnation points'' just in front and just to the rear of the sphere, causing the sides of
the loop to be stretched to a length &O(ln(a/h)) [26]; the accelerated motion over the
upper surface of the sphere is insu$cient to counteract the formation of the loop. In reality,
of course, the motion would be strongly in#uenced by large self-induced velocities of the
vortex [19], and by the production of additional vorticity by di!usion and separation from
the surface [30, 31].

The sound generated during this inviscid interaction can be calculated using formula (10),
where in

v";�>
�
(y).

There is no contribution to the integral in equation (10) from j"1 (because
�>

�
?�>

�
,0); similarly, symmetry precludes the existence of a net &&side-force'' on the

sphere, so that the subscript j"3 also makes no contribution to the integral. The sound
may therefore be attributed to a dipole source orientated in the x

�
direction, whose strength

equals the unsteady force on the #uid in this direction. Thus, equation (10) supplies

p(x, t)+
!�

�
; cos�

4�c
�
	x 	

�
�t � (� ) �>

�
?�>

�
) �y, t!

	x 	
c
�
�d� y, 	x 	PR, (49)

where �"cos��(x
�
/ 	x 	) is the angle between the observer direction x an the x

�
-axis.
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The integral is evaluated by writing

�"��(s�) s; , d�y"d�s�ds,

where

s;"(sL
�
, sL

�
, sL

�
)"unit vector locally parallel to �,

s� is the vector distance measured in the normal direction from the local axis of the vortex,
and s is the distance measured along the vortex in the direction of �. Then equation (49)
becomes

p
�
(x, t)

�
�
�;M cos�/4�	x 	

"!

�
�¹ �

�

��

[s; ) �>
�
?�>

�
] dsN , sN "

s

a
, M"

;

c
�

, (50)

where the integrand is evaluated at the retarded position of the distorted vortex.
The integral in equation (50) is formally divergent, because

s; ) �>
�
?�>

�
P1 as sN P$R.

The divergence is arti"cial, however, being a consequence of formal operations used in the
application of the compact Green function (6). The &&in"nite'' contributions to the integral
from large values of sM are constant at successive retarded locations of the vortex, and
disappear on di!erentiation with respect to ¹. The integral can therefore be evaluated
numerically by restricting the range of integration to a "nite interval, say, !10(sN (10,
because the contributions at larger values of sN are the same for all retarded times, and give
no contribution to the sound on di!erentiation.

Typical plots of the non-dimensional pressure predicted by equation (50) are shown in
Figure 16 for h/a"0)2, 0)8; they illustrate the decrease in the sound level with increasing
values of the initial stando! distance h of the vortex. The pressure signatures are consistent
with the lift dipole radiation in Figures 8 and 9 for an airfoil of compact span (vortex
shedding is responsible for the absence of a secondary, negative peak in the airfoil results).
In practice, of course, the gross distortion of the vortex evident in Figure 15 will
be accompanied by self-induced vortex motions that will tend to modify the details of
the predicted surface interaction noise. These motions can also generate conventional
Figure 16. Linear theory prediction (50) of the sound produced during the convection of a line vortex past the
sphere for h/a"0)2 (**)and "0)8 (- - - -).



Figure 17. Con"guration of the vortex ring and its image in the sphere.
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&&quadrupole noise'', independent of the presence of the sphere, but its relative intensity at
low Mach numbers would be expected to be small, at least at the dominant frequencies of
the unsteady motion.

7.2. VORTEX RING INTERACTING WITH A SPHERE

Consider next a vortex ring of radius r
�
(t) and circulation � which is coaxial with

the x
�
-axis and which translates in the positive x

�
direction under the in#uence of

self-induction and the mean #ow past the sphere (Figure 17). Suppose the vortex core to
be circular and of radius ��r

�
, and neglect any distortion of the core by interaction with

the sphere. Then the self-induced velocity u� of the vortex (in inviscid #ow) is given
by Kelvin's formula [19, 25]

u�(r�
, �)"

�
4�r

�
�ln �

8r
�

� �!
1

4� . (51)

The in#uence of the sphere on the motion is accounted for by a coaxial image ring vortex
whose circulation �
, radius r


�
and axial location x


��
are given by [25, 30]

�
"!

� (r�
�
#x�

��
)���

a
, r


�
"

a�r
�

r�
�
#x�

��

, x

��

"

a�x
��

r�
�
#x�

��

, (52)

where x
��

is the intersection of the plane of symmetry of the vortex with the x
�
-axis. The

combined velocity of motion of the vortex induced by this image and by the irrotational
mean #ow past the sphere can be expressed in terms of Stokes stream function � (r, x

�
),

which has the form [19, 25]

� (r, x
�
)"!

;r�

2 �1!

a�

(r�#x�
�
)����!

�

2�

(R



#R
�
) �K (�)!E (�)�, (53)
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where

R
$

"�(rGr

�
)�#(x

�
!x


��
)�, �"

R
�

!R



R
�

#R



,

K(�)"�
���

�

d�

�1!�� sin��
, E (�)"�

���

�

�1!�� sin��d�,

and where r denotes perpendicular distance from the x
�
-axis, and K(�), E (�) are,

respectively, complete elliptic integrals of the "rst and second kinds.
The radius r

�
(t) and axial position x

��
(t) of the vortex ring are then determined by the

equations of motion

dr
�

dt
"

1

r
�

��
�x

�

(r
�
, x

��
),

dx
��

dt
"u� (r�

, �)!
1

r
�

��
�r

(r
�
, x

��
). (54)

The radius � of the vortex core decreases when r
�
increases, because the vortex lines move

with the #uid particles. If h denotes the radius r
�
of the vortex at large distances from the

sphere, and �
�
is the corresponding core radius, then at time t,

(2�r
�
)���"(2�h)���

�
, i.e., � (t)"�

�	
h

r
�

and the self-induction velocity (51) is given in terms of the current radius r
�
(t) by the

formula

u�"

�
4�r

�
�ln �

8h

�
�
�
r
�
(t)

h �
���

�!
1

4�. (55)

The equations of motion are cast in non-dimensional terms by de"ning

X"

x
��
a

, R"

r
�
a
, <"

�
2�a

, ¹"

<t

a
, �"

;

<
.

Then

dR

d¹

"

1

R

��
�X

(R, X),
dX

d¹

"!

1

R

��
�X

(R, X)#
1

2R �ln �
8h

�
�
�
aR

h �
���

�!

1

4�, (56)

where

�"!

�R�

2 �1!

1

(R�#X�)����#(R�#X�)��� (RK



#R)
�
) �K(�)!E (�)�,

R)
$

"�(RGR
)�#(X!X
)�, �"

R)
�

!R)



R)
�

#R)



,

R
"
R

R�#X�
, X
"

X

R�#X�
.

Figure 18 illustrates the sections in the vertical plane of symmetry of the sphere of two
typical vortex trajectories predicted by equations (56). In both cases, the integration is
started at X"!10 (10 sphere radii) upstream with the following initial values for the
vortex ring radius and core radius:

h"0)8a, �
�
"0)05h. (57)



Figure 18. Vortex ring trajectories past the sphere when h/a"0)8, �
�
"0)05h for �"0 (;"0) (**) and �"3

(- - - - ).
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The solid and broken-like curves in the "gure correspond, respectively, to �"0 (no mean
#ow) and �"3. The latter value is chosen to make the mean stream velocity
; approximately the same as the self-induced velocity u� at large distances from the sphere.
This is seen to have a relatively small e!ect on the pro"le of the trajectory, expanding it
slightly close to the sphere, although the speed of convection of the ring past the sphere is
greatly increased.

The sound pressure radiated during the interaction is given in integral form by
equation (10). To evaluate the integral, the "nite size of the core diameter can be ignored,
and the vorticity approximated by

�"��) � (r!r
�
(t)) � (x

�
!x

��
(t)), (58)

where �) is a unit azimuthal vector, locally tangential to the vorticity � and orientated in the
clockwise direction when the vortex ring is viewed from upstream, as indicated in Figure 17.

Because of the symmetry of the interaction, the unsteady force on the sphere must be in
the mean #ow direction; the sound is therefore produced by the unsteady drag, and only the
component

>
�
"y

� �1#

a�

2 	y 	��,y
��1#

a�

2(r�#y�
�
)����

of the Kirchho! vector can make a non-trivial contribution to equation (10).
The production of sound is a non-linear event, dependent on the self-induced motion of the
vortex and induction by the image vortex, because the contribution by convection by the
mean velocity ;�>

�
is null, since

(�?;�>
�
) �y, t!

	x 	
c
�
� ) �>

�
(y),0.

Thus, substituting equation (50) into equation (10) and evaluating the integral, and
expressing this result in non-dimensional form, we have

p(x, t)

�
�
<�M cos� (a/	x 	)

+�
�

�¹ �
3R�X

2(R�#X�)���

dX

d¹

#�1#

R�!2X�

2 (R�#X�)���� R
dR

d¹�, (59)



Figure 19. Retarded locations of the vortex ring and the corresponding acoustic pressure (59) when h/a"0)8,
�
�
"0)05h for �"0 (;"0) (==) and �"3 (**)..
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where M"</c
�
,�/2�ac

�
, and R and X are the solutions of equations (54). The term

in square braces is evaluated at the retarded position of the vortex ring, and � is the
angle between the radiation direction and the x

�
-axis illustrated in the upper part of

Figure 19.
The non-dimensional acoustic pressure signatures plotted in Figure 19 are for the same

conditions considered above for the vortex ring trajectories and initial conditions (57)
(see Figure 18). The thick solid curve is the pressure pro"le in the absence of mean #ow
(;"0). The location of the vortex ring in this case at various retarded times <[t]/a
is indicated on the thick curve in the upper part of Figure 19. Similarly, the thin-line
curves in the "gure give the pressure and retarded positions for ;"3<, when the
self-induction velocity u�+; at large distances from the sphere. Both the amplitude and
frequency of the sound are increased because of the increased convection velocity of the
vortex past the sphere.

8. VORTEX PAIR INCIDENT ON A THIN-WALL APERTURE

Hydrodynamic motion in the vicinity of an aperture in a large thin-wall generally
produces an unsteady volume #ux through the aperture which is acoustically equivalent to
a monopole source, provided the aperture diameter is compact. The upper part of Figure 20
depicts a simple model of such a source. The rigid wall x

�
"0 is pierced by a two-

dimensional &&slit'' of width 2a whose centerline extends along the x
�
-axis. A vortex pair



Figure 20. Trajectories and acoustic pressures (62) for a vortex pair approaching a wall aperture for h/a"0)35,
0)6; the sound is weakly dependent on the Mach number M"�/4�ac

�
, and results are plotted for M"0)03.
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aligned with the x
�
-axis, consisting of vortices of strengths $� at the respective complex

conjugate positions z
�
"x

��
#ix

��
and z*

�
"x

��
!ix

��
impinges on the aperture from the

&&left'' (x
�
"!R).

The motion is symmetric with respect to the x
�
-axis, and the transformation [22]

�"

z

�z�#a�
, z"x

�
#ix

�
,

maps the region Im z'0 cut along the upper section x
�
'a of the wall onto the upper-half

of the �-plane. This permits the equation of motion of the vortex pair to be determined in the
form

dZ*

d¹

"

3iZ

Z�#1
#

2i

(Z�#1)��� �Z/�Z�#1!(Z/�Z�#1)*�
, (60)

where Z"z
�
/a, ¹"<t/a, <"�/(4�a) and dz

�
/dt"< (dZ/d¹),<(u#iv).

Let the initial separation of the vortices at x
�
"!R be 2h. To integrate equation (60),

we set z
�
"!¸#ih at a convenient initial (but arbitrary) time ¹"¹
, where ¸�a. When

h/a is smaller than �
�
���&0)385 [33], the vortex pair passes through the aperture in

the manner indicated in Figure 20 for h/a"0)35. For larger values of h/a, the trajectories of
the two vortices separate and follow symmetric paths parallel to the wall on either side
of the aperture, as illustrated for h/a"0)6.
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The acoustic pressure for an arbitrary inviscid, vortex}surface interaction at low Mach
numbers is given by the "rst integral on the right of equation (5). When the width 2a of the
aperture is small compared to the characteristic acoustic wavelength of the sound, the
appropriate compact Green function assumes the form [4, 34]

G(x, y, t!�)+!

�c
�
sgn(x

�
)

� �2�	x 	

� (t!�!	x 	/c
�
)

�t!�!	x 	/c
�

Re �ln �
zJ
a
#	

zJ �
a�

!1��, zJ "y
�
#iy

�
,

(61)

where

� (t)"�
0, t(0,

��
�

ln (�u��/4c
�
t) e��� d�

[ln (�a��/4c
�
t)]�#��

, t'0;

�"1)781072.

The dependence on source position y in equation (61) is contained entirely in the
logarithmic term, which represents the velocity potential of the ideal #ow that would be
produced through the aperture (from &&left'' and &&right'') by a uniform pressure drop across
the wall.

When vortex shedding from the aperture edges is ignored, the vorticity is

�"�k� (y
�
!x

��
)�(y

�
!x

��
)!�k�(y

�
!x

��
)�(y

�
#x

��
),

where k is a unit vector in the x
�
direction (out of the plane of the paper in Figure 20). Thus,

de"ning

WI (Z)"�
1

�ZI �!1�ZI "iZ*

, �( (¹)"� (t), M"

<

c
�

,

and setting ¹K "<�/a, we "nd

p(x, t)+
2����

�
<� sgn(x

�
)

��M �
a

	x 	�
���

�
	�


��

Re (W� * (Z)(u#iv))(¹K )
�( ([¹]!¹K ) d¹K

�[¹]!¹K
, [¹]"

<[t]

a
.

Therefore, putting �"�[¹]!¹K , the non-dimensional acoustic pressure is given by

p(x, t)

�
�
<� sgn(x

�
) (a/	x 	)���

+

2���

��M �
�

�

Re (W� * (Z)(u#iv)) ([¹]!��) �( (��) d�, 	x 	PR,

(62)

where

�( (��)"�
�

�

ln (�M��/4��) e��� d�
[ln (�M��/4��)]�#��

.

For numerical purposes, the upper limit of integration in equation (62) is �"�[¹]!¹ 
,
where ¹
 is the non-dimensional initial time from which the motion of the vortex pair is
calculated.

The value of the integral (62) depends weakly on the characteristic Mach number
M"</c

�
,�/4�ac

�
. This is just the initial value of the vortex convection Mach number

(as x
�
P!R) when the separation distance of the vortices 2h is the same as the width 2a of

the aperture. We have takenM"0)03 for the far"eld acoustic pressure signatures plotted in
Figure 20; in air this would imply that <&10 m/s.
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The #ow induced by the vortex pair approaching the wall forms a localized two-
dimensional &&jet'' between the vortices, directed towards the wall. The resistance of the wall
to this #ow causes the pressure just to the left of the wall aperture to rise, forcing #uid
through the aperture into the region x

�
'0. The radiation therefore has the characteristics

of an acoustic monopole source for x
�
'0 and a sink for x

�
(0. Numerical results are

illustrated in the "gure for h/a"0)35, 0)6. In each case, the time origin has been adjusted to
correspond approximately with the peak in the radiated acoustic pressure, which occurs
when the vortices pass by the edges of the aperture. When h/a"0)6, the vortices do not
penetrate the aperture but are de#ected by the wall; this produces a relatively larger
pressure rise than for h/a"0)35, where the vortices pass through the aperture. The
maximum acoustic pressure amplitude is found to occur when h/a just exceeds the critical
value (&0)385), when the vortex trajectories pass very close to the aperture edges.Further
increases of h/a beyond 0)6 result in a gradual reduction in the amplitude of the sound, and
a corresponding increase in the width of the acoustic pulse (i.e., a decrease in the
characteristic frequency of the sound).

9. CONCLUSION

The sound produced when unsteady #ow interacts with an acoustically compact rigid
surface (or surface element) is determined principally by the unsteady force between the
surface and the #uid. Curle's [16] theory determines this force as a surface integral of the
surface pressure. However, vortex methods are increasingly being recognized as an e$cient
tool for calculating the local unsteady #ows in such interactions, and the theory of vortex
sound provides an e!ective means of computing surface forces directly from a knowledge of
the vorticity distribution and its evolution. The relative simplicity of this approach has been
illustrated in this paper by consideration of a collection of vortex}surface interaction
problems that can be solved for both the #uid motion and the generated sound by
elementary numerical means. These solutions provide qualitative and quantitative insight
into the mechanisms responsible for sound production, and also form the basis of
a fundamental database that can be used to validate predictions of more general numerical
schemes.
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